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Abstract— We present results from a study compar-
ing a recently developed coevolutionary genetic algorithm
(CGA) against a set of evolutionary algorithms using a suite
of multiobjective optimization benchmarks. The CGA
embodies competitive coevolution and employs a simple,
straightforward target population representation and fit-
ness calculation based on developmental theory of learn-
ing. Because of these properties, setting up the additional
population is trivial making implementation no more diffi-
cult than using a standard GA. Empirical results using a
suite of two-objective test functions indicate that this CGA
performs well at finding solutions on convex, nonconvex,
discrete, and deceptive Pareto-optimal fronts, while giv-
ing respectable results on a nonuniform optimization. On
a multimodal Pareto front, the CGA yields poor coverage
across the Pareto front, yet finds a solution that dominates
all the solutions produced by the eight other algorithms.

I. Introduction

Cooperation and competition between populations of
organisms in nature has inspired researchers to incor-
porate coevolutionary dynamics into genetic algorithms.
The common element in these approaches is the inclusion
of one or more additional populations. A growing body
of research explores coevolutionary approaches that capi-
talize on this dynamic quality (for review, see [11]). This
coevolutionary work has largely concentrated on competi-
tive interactions. The interactions can be between individ-
uals that compete in a symmetric game-like context [12],
[14], or between populations of different types of individ-
uals that compete in predator/prey type relationships [4],
[9], [8], [5], [13]. In these cases, individuals are rewarded
if they defeat the individuals with which they compete.
These interactions can support “arms-races” in which the
individuals force each other to become increasingly com-
petent.
A few studies have investigated the role of cooperation

and how it can help solve some problems endemic to evo-
lutionary methods, like the difficulty of choosing an appro-
priate encoding for the individuals [10] and the difficulty of
decomposing composite problems [1]. Other studies have
found that a balance of cooperation and competition is
necessary to prevent evolutionary algorithms from getting
trapped in local minima, or “Mediocre Stable States” [2].
In this paper we describe a coevolutionary genetic algo-

rithm (CGA) whose fitness calculations are inspired by de-

velopmental theory [3]. The fundamental idea is to use co-
evolutionary dynamics to automatically regulate the level
of difficulty, from easy to hard, posed by a population of
tests. We then describe multiobjective optimization prob-
lems and a suite of test functions that we use to judge the
performance of the CGA. Empirical results from the CGA
runs are presented and compared to previously-published
results.

II. Coevolutionary GA

The coevolutionary algorithm we present is based on
an algorithm used in previous evolvable hardware appli-
cations [6], [7], and is based on competition between two
populations. The population of candidate solutions, or
trial population, is represented and manipulated much the
same as the main population in a standard genetic algo-
rithm. The second population, or target population, con-
sists of target objective vectors (TOVs) – vectors contain-
ing targets for the individual objectives to be optimized.
An overview of the algorithm is presented in Figure 1.

The population of TOVs is used to encapsulate the level
of difficulty that the trial population faces. Under the con-
trol of the genetic algorithm, the TOVs evolve from easy
to difficult based on the level of proficiency of the trial
population. The algorithm designer need only specify two
TOVs: an easy TOV and a difficult TOV, the latter be-
ing the ultimate goal of the run (analogous to stopping
criteria in standard evolutionary algorithms). The first
generation of TOVs are randomly initialized with TOV
values that fall within the “easy” and “difficult” bounds.
The CGA seeds the easy TOVs into early generations of
the run to guarantee that the coevolutionary dynamic will
be used – as we shall see, if all TOVs were too difficult for
generation zero individuals, there would be no compet-
itive mechanism and hence no fitness feedback between
populations.

Each TOV consists of a set of target objectives that act
like thresholds: all thresholds must be met or exceeded in
order for the TOV to be “solved,” and hence gain fitness1.

1This all-or-nothing property can be relaxed to accommodate par-
tial solutions, however that version of the algorithm will be reported
on in future work.
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Fig. 1. Overview of coevolutionary genetic algorithm.

For example, assume a four-objective TOV where one de-
sires to maximize the first objective and minimize the re-
maining objectives. Then, the TOV 〈63.0, 0.6, 0.8, 9.5〉
solves 〈60.0, 1.0, 1.0, 10.0〉, but 〈58.0, 0.6, 1.2, 18.0〉 does
not.
The general form of the fitness calculations are as fol-

lows. Trial individuals are rewarded for solving difficult
TOVs. The most difficult TOV at a given generation is de-
fined to be the one that only one trial individual can solve.
Such a TOV garners the highest fitness score. TOVs that
are unsolvable, or are very easy to solve by the current
trial population, are given low fitness scores. Fitness of
individual in the trial population is computed as follows.
Individual i “plays” each TOV in the second population
and a score, si, is computed:

si =
∑
j∈t̂ovi

1

# trial
individuals
that solve tovj

where t̂ovi is the set of TOV indexes such that individual
i solves tovj. Note that the denominator in the above
fraction is guaranteed to be greater than or equal to one
due to the restriction on j. Then si is normalized linearly
between its upper and lower bounds such that 0.0 is the
best score and 1.0 the worst:

F (trial individuali) = 1.0− si/M2

where M2 is the size of the TOV population. The effect
of s is to reward trial individuals that solve the more diffi-
cult TOVs. A TOV has the greatest difficulty level when
exactly one trial individual can solve it. If many trial
individuals can solve a particular TOV, the fitness contri-
bution in s is shared among the trial individuals [13].
Fitness of an individual TOV is computed as follows.

Let xj denote the number of trial individuals that solve
tovj , and M1 be the trial population size. The fitness is

essentially xj , scaled and normalized, with a tractability
constraint:

F (tovj) =

{
1.0 xj = 0

1
(M1−1)

(xj − 1.0) xj ≥ 1

The tractability constraint gives a target vector a score
of 1.0 (the “worst” score) when no trial individuals can
solve it. This puts pressure on the TOV population to pose
difficult, yet solvable problems to the trial population.
The target population is manipulated like the single

population of a typical genetic algorithm. No explicit nich-
ing operators were used to enhance diversity. Constrained
mutation was used to ensure TOVs remained valid after
mutation. One point crossover was implemented by choos-
ing cut-points between individual objective values.
In typical real-world applications, the running time of

the evaluation function swamps out the running time of
the underlying evolutionary algorithm. However, for com-
parison to other multiobjective EAs, we can compute the
time complexity of the CGA as follows. Let the two pop-
ulations be of size M1 and M2, and let n denote the num-
ber of objectives. Evaluation of the trial population runs
at O(nM1). Then, fully-crossed pairwise comparisons (to
determine which trial individuals solve which target pop-
ulations) are required, running at O(nM1M2). Thus the
time complexity is O(nM1M2) for the core of the CGA.
In comparison, SPEA [16] and NSGA-II run at O(nM2),
which is identical when M1 =M2 is used in the CGA.

III. Multiobjective Optimization

The notion of weighing tradeoffs is common to prob-
lems in everyday life, science, and engineering. Buying
a less expensive product might tradeoff product quality
for the ability to buy more of something else. Adding
an additional science instrument to a spacecraft trades
off increased costs for increased science return. Hard opti-
mization problems typically require many decisions on the
input side and many objectives to optimize on the output
side. The set of objectives forms a space where points
in the space represent individual solutions. The goal of
course is to find the best or optimal solutions to the opti-
mization problem at hand. Pareto optimality defines how
to determine the set of optimal solutions. A solution is
Pareto-optimal if no other solution can improve one ob-
jective function without a simultaneous deterioration of at
least one of the other objectives. A set of such solutions is
called the Pareto-optimal front. An example of a Pareto
front is seen in Figure 2.
Evolutionary algorithms (EAs) have recently attracted

much attention in the exploration of Pareto-optimal
fronts. It is claimed that EAs are the preeminent search
algorithms for such tasks [17]. An overview of EAs in
multiobjective EAs can be found in [15].
Below we briefly touch on relevant terminology and def-

initions regarding multiobjective optimization problems
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Fig. 2. Example of Pareto front when minimizing two objectives
f1 and f2. Nondominated solutions are represented as hollow
circles (◦) and dominated solutions by filled circles (•).

(following [17]). The set of input parameters, or decision
variable, is called the decision vector. The set of objective
functions that measure the performance of the system is
called the objective vector. In an evolutionary algorithm
framework, a decision vector naturally corresponds to a
candidate solution, and the functions comprising the ob-
jective vector are typically incorporated, by various tech-
niques, into the fitness function(s).
A dominance test is a way to measure the relative per-

formance among decision vectors. Given two decision vec-
tors a and b, a dominates b if and only if a ties or exceeds
b’s performance on every objective, and there exists at
least one objective where a’s performance strictly exceeds
b’s. Using this test, we can pare down any given set of
decision vectors and find the set of nondominated deci-
sion vectors. Such a set is said to form the nondominated
front. If the nondominated set resulted from testing every
possible decision vector, then the nondominated set is the
Pareto-optimal front.
A coverage test adds a test for equality to the dominance

test. Given two decision vectors a and b, a covers b if and
only if a dominates b or a’s objective vector is identical to
b’s. The coverage test is used to compare two algorithms
as follows. The function C(A,B) computes the percentage
of algorithm B’s solutions that are covered by solutions
produced by A.
The above tests (see [17] for formal definitions) are used

to assess the ability of algorithms to optimize a set of de-
cision vectors. The dominance test will be used to cull
dominated solutions produced by a given algorithm. The
coverage test will be used to compare the solutions pro-
duced by algorithms head-to-head.

IV. Experimental Setup

We follow the suite of multiobjective test functions
and empirical results presented in [17]. Briefly, there
were seven multiobjective evolutionary algorithms and
one random search algorithm executed on six test func-

Number of generations 250
Trial population size 100
Target objective vector population size 100
Crossover rate (both populations) 0.8
Mutation rate (both populations) 0.01

TABLE I

Coevolutionary GA parameters.

tions. The algorithms compared in [17] were: random
search (RAND), Fonseca and Fleming’s multiobjective
GA (FFGA), the Niched Pareto GA (NPGA), Hajela
and Lin’s weighted sum approach (HLGA), the Vector
Evaluated GA (VEGA), the Nondominated Sorting GA
(NSGA), a single-objective EA using weighted-sum ag-
gregation (SOEA), and the Strength Pareto GA (SPEA).
The CGA described above is denoted COEV.

The test functions, T1 – T6, were chosen because they
provide a range of difficulties for multiobjective optimiza-
tion (e.g., multimodality, deception, isolated optima). In
each optimization, it is desired to minimize the objective
vector 〈f1, f2〉 by finding its Pareto-optimal front.
To allow a direct comparison to the results in [17], we

followed the run setup as closely as possible: thirty CGA
runs were executed for each test function using the pa-
rameters shown in Table I. To compute the nondomi-
nated front for the CGA, we did the following. For each
CGA run, we collected all the output objective vectors
(〈f1, f2〉) corresponding to the individuals evaluated dur-
ing the run. For each test function, the output objec-
tive vectors from five randomly-selected runs were com-
bined and a domination test removed all the dominated
solutions. For the algorithm-to-algorithm coverage test
(function C described above), we used the results from the
thirty runs as follows. The nondominated set from each
run was computed. Then the domination test was per-
formed by pitting the nondominated set from algorithm
A, run i, against the nondominated set from algorithm B,
run i. Statistics, in the form of boxplots (described be-
low), were computed using the resulting thirty C values.
Both C(A,B) and C(B,A) were computed as they may be
different.

V. Results

As noted in the literature, comparing multiobjective
optimization algorithms against each other can be diffi-
cult. One would like an algorithm to minimize the dis-
tance to the Pareto-optimal front and provide uniform
coverage of the Pareto-optimal front for a wide range of
values. Thus, comparisons become multiobjective opti-
mization problems themselves: is an algorithm that finds
a handful of Pareto-optimal solutions better than an al-
gorithm that finds a wide, uniform distribution of near
Pareto-optimal solutions? With this in mind we present
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the experimental results.
Figures 3–4 show the results from the six test functions.

On each graph the optimal Pareto front is drawn as a
curve, data points for the eight comparison algorithms are
shown in gray2, and the data points from the CGA runs
(COEV) are shown as black circles.
In general, the results show that the CGA is a rela-

tively strong performer: it always exceeds random search
and has qualitatively good performance against strong al-
gorithms such as SPEA and NSGA. On the first two test
functions, the CGA has the qualitatively best distribu-
tion and alignment to the Pareto-optimal curve. In the
third test function, it performs on par with SPEA. In the
fourth test function, a multimodal surface, the CGA has
poor coverage, yet find a solution that dominates nearly all
the others. On the deceptive test function, T5, the CGA
provides relatively excellent coverage except at low f1 val-
ues, with SOEA doing better there. On the nonuniform
test function, T6, SPEA is the only algorithm to find any
Pareto-optimal solutions, and is able to span the width of
the front. However CGA provides near-optimal solutions,
with good coverage at high values of f1.
The head-to-head algorithm comparisons using the C

metric are shown in the boxplots of Figure 5. Each boxplot
contains results from each of the six test functions: the
dark dash is the median, the the top of the box is the
upper quartile, the bottom of the box is the lower quartile.
As can be seen, on all test functions the solutions found by
the CGA statistically cover the solutions found by RAND,
FFGA, NPGA, HLGA, and VEGA. The CGA’s weakest
results are on T6 against NSGA, SOEA, SPEA.

VI. Conclusion

Multiobjective optimization is clearly one of the most
important class of problems in science and engineering.
Solution techniques that are effective at searching what
are typically vast search spaces, and finding a selection of
Pareto-optimal solutions are very desirable. In this paper
we presented a coevolutionary genetic algorithm inspired
by development learning theory, and compared it empir-
ically to seven other evolutionary search techniques for
multiobjective optimization. In terms of algorithm de-
sign, CGA is no more difficult to design and implement
than a typical genetic algorithm. In fact, because the fit-
ness functions are identical across application domains,
implementation may be viewed as being easier. The re-
sults show that the CGA performed very well compared to
the other evolutionary algorithms and random search. On
four of the six functions, it could be argued that the CGA
qualitatively performed on par with or outperformed the
other algorithms. Missing from this study is a compari-
son against traditional optimization algorithms, which we

2Data used to plot the curves from the non-coevolutionary runs
was obtained from the authors of [17]. Differences between the
curves in this paper and in [17] can be seen because the data was
sampled randomly.

leave for future work.
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Test function T3 (discrete)
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Fig. 3. Test functions T1 – T3.

Test function T4 (multimodal)
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Test function T5 (deceptive)
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Test function T6 (nonuniform)
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Fig. 4. Test functions T4 – T6.
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Fig. 5. Boxplots showing statistics from 30 samples of the function
C comparing the CGA (COEV) to the other algorithms. Each
boxplot contains results from each of the six test functions: the
dark dash is the median, the the top of the box is the upper
quartile, the bottom of the box is the lower quartile.
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